
JANUARY 10, 2014

COMPUTATIONAL THINKING
BENEFITS SOCIETY
Jeannette M. Wing, Corporate Vice President, Microsoft Research

Fonte: http://socialissues.cs.toronto.edu/2014/01/computational-thinking/

Computer science has produced, at an

astonishing and breathtaking pace,

amazing technology that has transformed

our lives with profound economic and

societal impact. Computer science’s effect

on society was foreseen forty years ago by

Gotlieb and Borodin in their book Social

Issues in Computing. Moreover, in the past

few years, we have come to realize that

computer science offers not just useful

software and hardware artifacts, but also

an intellectual framework for thinking, what

I call “computational thinking” [Wing06].

Everyone can benefit from thinking

computationally. My grand vision is that

computational thinking will be a

fundamental skill—just like reading, writing,

and arithmetic—used by everyone by the

middle of the 21st Century.

This article describes how pervasive

computational thinking has become in

research and education. Researchers and

professionals in an increasing number of

fields beyond computer science have been

reaping benefits from computational

thinking. Educators in colleges and

universities have begun to change

undergraduate curricula to promote

computational thinking to all students, not

just computer science majors. Before

elaborating on this progress toward my

vision, let’s begin with describing what is

meant by computational thinking.

1. What is computational thinking?

1.1 Definition

I use the term “computational thinking” as

shorthand for “thinking like a computer

scientist.” To be more descriptive,

however, I now define computational

thinking (with input from Al Aho at

Columbia University, Jan Cuny at the

National Science Foundation, and Larry

Snyder at the University of Washington) as

follows:

Computational thinking is the thought

processes involved in formulating a

problem and expressing its solution(s) in

such a way that a computer—human or

machine—can effectively carry out.

Informally, computational thinking

describes the mental activity in formulating

a problem to admit a computational

solution. The solution can be carried out by

a human or machine. This latter point is

important. First, humans

compute. Second, people can learn

computational thinking without a

machine. Also, computational thinking is

not just about problem solving, but also

about problem formulation.

http://www.cs.cmu.edu/~wing/

In this definition I deliberately use technical

terms. By “expressing” I mean creating a

linguistic representation for the purpose of

communicating a solution to others, people

or machines. The expressiveness of a

language, e.g., programming language,

can often make the difference between an

elegant or inelegant solution, e.g., between

a program provably absent of certain

classes of bugs or not. By “effective,” in the

context of the Turing machine model of

computation, I mean “computable” (or

“decidable” or “recursive”); however, it is

open research to revisit models of

computation, and thus the meaning of

“effective,” when we consider what is

computable by say biological or quantum

computers [Wing08] or what is solvable by

humans [Levin13, Wing08].

1.2. Abstraction is Key

Computer science is the automation of

abstractions [1]. So, the most important

and high-level thought process in

computational thinking is the abstraction

process. Abstraction is used in defining

patterns, generalizing from specific

instances, and parameterization. It is used

to let one object stand for many. It is used

to capture essential properties common to

a set of objects while hiding irrelevant

distinctions among them. For example, an

algorithm is an abstraction of a process that

takes inputs, executes a sequence of

steps, and produces outputs to satisfy a

desired goal. An abstract data type defines

an abstract set of values and operations for

manipulating those values, hiding the

actual representation of the values from the

user of the abstract data type. Designing

efficient algorithms inherently involves

designing abstract data types.

Abstraction gives us the power to scale and

deal with complexity. Applying abstraction

recursively allows us to build larger and

larger systems, with the base case (at least

for traditional computer science) being bits

(0’s and 1’s). In computing, we routinely

build systems in terms of layers of

abstraction, allowing us to focus on one

layer at a time and on the formal relations

(e.g., “uses,” “refines” or “implements,”

“simulates”) between adjacent

layers. When we write a program in a high-

level language, we are building on lower

layers of abstractions. We do not worry

about the details of the underlying

hardware, the operating system, the file

system, or the network; furthermore, we

rely on the compiler to correctly implement

the semantics of the language. The narrow-

waist architecture of the Internet

demonstrates the effectiveness and

robustness of appropriately designed

abstractions: the simple TCP/IP layer at the

middle has enabled a multitude of

unforeseen applications to proliferate at

layers above, and a multitude of

unforeseen platforms, communications

media, and devices to proliferate at layers

below.

[1] Aho and Ullman in their

1992 Foundations of Computer

Science textbook define Computer Science

to be “The Mechanization of Abstraction.”

2. Computational Thinking and Other

Disciplines

Computational thinking has already

influenced the research agenda of all

science and engineering disciplines.

Starting decades ago with the use of

http://socialissues.cs.toronto.edu/2014/01/computational-thinking/#_ftn1
http://socialissues.cs.toronto.edu/2014/01/computational-thinking/#_ftnref1
http://i.stanford.edu/~ullman/focs.html
http://i.stanford.edu/~ullman/focs.html

computational modeling and simulation,

through today’s use of data mining and

machine learning to analyze massive

amounts of data, computation is

recognized as the third pillar of science,

along with theory and experimentation

[PITAC 2005].

Consider just biology. The expedited

sequencing of the human genome through

the “shotgun algorithm” awakened the

interest of the biology community in

computational concepts (e.g., algorithms

and data structures) and computational

approaches (e.g., massive parallelism for

high throughput), not just computational

artifacts (e.g., computers and networks). In

2005, the Computer Science and

Telecommunications Board of the National

Research Council (NRC) published a 468-

page report laying out a research agenda

to explore the interface between biology

and computing [NRC05]. In 2009, the NRC

Life Sciences Board’s study on Biology in

the 21st Century recommends that “within

the national New Biology Initiative, priority

be given to the development of the

information technologies and sciences that

will be critical to the success of the New

Biology [NRC09].” Now at many colleges

students can choose to major in

computational biology.

The volume and rate at which scientists

and engineers are now collecting and

producing data—through instruments,

experiments, simulations, and crowd-

sourcing—are demanding advances in

data analytics, data storage and retrieval,

as well as data visualization. The

complexity of the multi-dimensional

systems that scientists and engineers want

to model and analyze requires new

computational abstractions. These are just

two reasons that every scientific directorate

and office at the National Science

Foundation participated in the Cyber-

enabled Discovery and Innovation, or CDI,

program, an initiative started when I first

joined NSF in 2007. By the time I left, the

fiscal year 2011 budget request for CDI

was $100 million. CDI was in a nutshell

“computational thinking for science and

engineering [CDI11].”

Computational thinking has also begun to

influence disciplines and professions

beyond science and engineering. For

example, areas of active study include

algorithmic medicine, computational

economics, computational finance,

computational law, computational social

science, digital archaeology, digital arts,

digital humanities, and digital journalism.

Data analytics is used in training Army

recruits, detecting email spam and credit

card fraud, recommending movies and

books, ranking the quality of services, and

personalizing coupons at supermarket

checkouts. Machine learning is used by

every major IT company for understanding

human behavior and thus to tailor a

customer’s experience to his or her own

preferences. Every industry and

profession talks about Big Data and Cloud

Computing. New York City and Seattle are

vying to be named Data Science Capital of

the US [Miller13].

3. Computational Thinking and

Education

In the early-2000s, computer science had a

moment of panic. Undergraduate

enrollments were dropping. Computer

science departments stopped hiring new

faculty. One reason I wrote my 2006

CACM article on computational thinking

was to inject some positive thinking into our

community. Rather than bemoan the

declining interest in computer science, I

wanted us to shout to the world about the

joy of computing, and more importantly,

about the importance of computing. Sure

enough, today enrollments are

skyrocketing (again). Demand for

graduates with computing skills far

exceeds the supply; six-figure starting

salaries offered to graduates with a B.S. in

Computer Science are not uncommon.

3.1 Undergraduate Education

Campuses throughout the United States

and abroad are revisiting their

undergraduate curriculum in computer

science. They are changing their first

course in computer science to cover

fundamental principles and concepts, not

just programming. For example, Carnegie

Mellon revised its undergraduate first-year

courses to promote computational thinking

for non-majors

[BryantSutnerStehlik10]. Harvey Mudd

redesigned its introductory course with

stellar success, including increasing the

participation of women in computing

[Klawe13]. At Harvard, “In just a few short

years CS50 has rocketed from being a

middling course to one of the biggest on

campus, with nearly 700 students and an

astounding 102-member staff

[Farrell13].” For MIT’s introductory course

to computer science, Eric Grimson and

John Guttag say in their opening remarks “I

want to begin talking about the concepts

and tools of computational thinking, which

is what we’re primarily going to focus on

here. We’re going to try and help you learn

how to think like a computer scientist

[GrimsonGuttag08].”

Many such introductory courses are now

offered to or required by non-majors to

take. Depending on the school, the

requirement might be a general

requirement (CMU) or a distribution

requirement, e.g., to satisfy a science and

technology (MIT), empirical and

mathematical reasoning (Harvard), or a

quantitative reasoning (Princeton)

requirement.

3.2 What about K-12?

Not till computational thinking is taught

routinely at K-12 levels of education will my

vision be truly realized. Surprisingly, as a

community, we have made faster progress

at spreading computational thinking to K-

12 than I had expected. We have

professional organizations, industry, non-

profits, and government policymakers to

thank.

The College Board, with support from NSF,

is designing a new Advanced Placement

(AP) course that covers the fundamental

concepts of computing and computational

thinking (see the CS

Principles Project). Phase 2 of the CS

Principles project is in play and will lead to

an operational exam in 2016-

2017. Roughly forty high schools and ten

colleges are part of piloting this course in

the next three years. Not coincidentally,

the changes to the Computer Science AP

course are consistent with the changes in

introductory computer science courses

taking place now on college campuses.

Another boost is expected to come from the

NSF’s Computing Education for the 21st

http://www.csprinciples.org/
http://www.csprinciples.org/

Century (CE21) program, started in

September 2010 and designed to help K-

12 students, as well as first- and second-

year college students, and their teachers

develop computational thinking

competencies. CE21 builds on the

successes of the two prior NSF programs,

CISE Pathways to Revitalized

Undergraduate Computing Education

(CPATH) and Broadening Participating in

Computing (BPC). CE21 has a special

emphasis on activities that support the CS

10K Project, an initiative launched by NSF

through BPC. CS 10K aims to catalyze a

revision of high school curriculum, with the

new AP course as a centerpiece, and to

prepare 10,000 teachers to teach the new

courses in 10,000 high schools by 2015.

Industry is also promoting the importance

of computing for all. Since 2006, with help

from Google and later Microsoft, Carnegie

Mellon has held summer workshops for

high school teachers called “CS4HS.”

These workshops are designed to deliver

the message that there is more to computer

science than computer

programming. CS4HS spread in 2007 to

UCLA and the University of Washington.

By 2013, under the auspices of

Google, CS4HS had spread to 63 schools

in the United States, 20 in China, 12 in

Australia, 3 in New Zealand, and 28 in

Europe, the Middle East and Africa. Also at

Carnegie Mellon, Microsoft Research

funds the Center for Computational

Thinking, which supports both research

and educational outreach projects.

Computing in the Core is a “non-partisan

advocacy coalition of associations,

corporations, scientific societies, and other

non-profits that strive to elevate computer

science education to a core academic

subject in K-12 education, giving young

people the college- and career-readiness

knowledge and skills necessary in a

technology-focused society.” Serving on

Computing in the Core’s executive

committee are: Association For Computing

Machinery, Computer Science Teachers

Association, Google,IEEE Computer

Society, Microsoft, and National Center for

Women and Information Technology.

Code.org is a newly formed public non-

profit, sister organization of Computing in

the Core. Its current corporate donors are

Allen and Company, Amazon, Google,

JPMorgan Chase and co., Juniper

Networks, LinkedIn, Microsoft, and

Salesforce. These companies and another

20 partners came together out of need for

more professionals trained with computer

science skills. Code.org hosts a rich suite

of educational materials and tools that run

on many platforms, including smart phones

and tablets. It lists local high schools and

camps throughout the US where students

can learn computing.

Computer science has also gotten

attention from elected officials. In May

2009, computer science thought leaders

held an event on Capitol Hill to call on

policymakers to make sure that computer

science is included in all federally-funded

educational programs that focus on

science, technology, engineering and

mathematics (STEM) fields. The U.S.

House of Representatives designated the

first week of December as Computer

Science Education Week, originally

conceived by Computing in the Core, and

produced in 2013 by Code.org. In June

2013, U.S. Representative Susan Brooks

(R-IN) and Representative Jared Polis (D-

http://cs4hs.com/
http://www.cs.cmu.edu/~CompThink/
http://www.cs.cmu.edu/~CompThink/
http://www.computinginthecore.org/
http://www.acm.org/
http://www.acm.org/
http://csta.acm.org/
http://csta.acm.org/
http://www.computer.org/portal/web/guest/home
http://www.computer.org/portal/web/guest/home
http://www.ncwit.org/
http://www.ncwit.org/
http://code.org/
http://csedweek.org/
http://csedweek.org/

CO) and others introduced legislation to

bolster K-12 computer science education

efforts. A month later, U.S. Senators

Robert Casey (D-PA) and Marco Rubio (R-

FL) followed suit with similar legislation.

Computational thinking has also spread

internationally. In January 2012, the British

Royal Society published a report that says

that “’Computational thinking’ offers

insightful ways to view how information

operates in many natural and engineered

systems” and recommends that “Every

child should have the opportunity to learn

Computing at school.” (“School” in the UK

is the same as K-12 in the US.) Since that

report the UK Department for Education

published in February 2013 a proposed

national curriculum of study for computing

[UKEd13] with the final version of the

curriculum becoming statutory in

September 2014. In other words, by Fall

2014, all K-12 students in the UK will be

taught concepts in computer science

appropriate for their grade level. Much of

the legwork behind this achievement was

accomplished by the grassroots effort

called “Computing at School.” This

organization is helping to organize the

teacher training in the UK needed to

achieve the 2014 goal.

Asian countries are also making rapid

strides in the same direction. I am aware

of efforts similar to those in the US and the

UK taking place in China, Korea, and

Singapore.

4. Progress So Far and Work Still to

Do

Nearly eight years after the publication of

my CACM Viewpoint, how far have we

come? We have come a long way, along

all dimensions: computational thinking has

influenced the thinking in many other

disciplines and many professional sectors;

computational thinking, through revamped

introductory computer science courses,

has changed undergraduate curricula. We

are making inroads in K-12 education

worldwide.

While we have made incredible progress,

our journey has just begun. We will see

more and more disciplines make scholarly

advances through the use of

computing. We will see more and more

professions transformed by their reliance

on computing for conducting business. We

will see more and more colleges and

universities requiring an introductory

computer science course to graduate. We

will see more and more countries adding

computer science to K-12 curricula.

We need to continue to build up and on our

momentum. We still need to explain better

to non-computer scientists what we mean

by computational thinking and the benefits

of being able to think computationally. We

need to continue to promote with passion

and commitment the importance of

teaching computer science to K-12

students. Minimally, we should strive to

ensure that every high school student

around the world has access to learning

computer science. The true impact of what

we are doing now will not be seen for

decades.

Computational thinking is not just or all

about computer science. The educational

benefits of being able to think

computationally—starting with the use of

abstractions—enhance and reinforce

intellectual skills, and thus can be

http://www.computingatschool.org.uk/

transferred to any domain. Science,

society, and our economy will benefit from

the discoveries and innovations produced

by a workforce trained to think

computationally.

Personal Notes and Acknowledgements

Parts of this article, which I wrote for

Carnegie Mellon School of Computer

Science’s publication The Link [Wing11],

were based on earlier unpublished writings

authored with Jan Cuny and Larry

Snyder. I thank them for letting me them

use our shared prose and for their own

efforts in advocating computational

thinking.

Looking back over how much progress has

been made in spreading computational

thinking, I am grateful for the opportunity I

had while I was the Assistant Director of the

Computer and Information Science and

Engineering (CISE) Directorate of the

National Science Foundation. I had a hand

in CDI and CE21 from their start, allowing

me—through the reach of NSF—to spread

computational thinking directly to the

science and engineering research (CDI)

and education (CE21) communities in the

US. Jan Cuny’s initiative and persistence

led to NSF’s efforts with the College Board

and beyond.

Since the publication of my CACM article,

which has been translated into French and

Chinese, I have received hundreds of email

messages from people of all walks of life—

from a retired grandfather in Florida to a

mother in central Pennsylvania to a female

high school student in Pittsburgh, from a

Brazilian news reporter to the head of a

think tank in Sri Lanka to an Egyptian

student blogger, from artists to software

developers to astrophysicists—thanking

me for inspiring them and eager to support

my cause. I am grateful to everyone’s

support.

Bibliography and Further Reading

Besides the citations I gave in text, I

recommend the following references:

CSUnplugged [BellWittenFellows10] for

teaching young children about computer

science without using a machine; the

textbook used in MIT’s 6.00 Introductory to

Computer Science and Programming

[Guttag13]; a soon-to-be published book

on the breadth of computer science,

inspired by Feynman lectures for physics

[HeyPapay14]; a framing for principles of

computing [Denning10]; and two National

Research Council workshop reports

[NRC10, NRC11], as early attempts to

scope out the meaning and benefits of

computational thinking.

[BellWittenFellows10] Tim Bell, Ian H.

Witten, and Mike Fellows, “Computer

Science

Unplugged,” http://csunplugged.org/,

March 2010.

[BryantSutnerStehlik10] Randal E. Bryant,

Klaus Sutner and Mark Stehlik,

“Introductory Computer Science

Education: A Deans’ Perspective,”

Technical Report, CMU-CS10-140, August

2010.

[CDI11] Cyber-enabled Discovery and

Innovation, National Science

Foundation, http://www.nsf.gov/crssprgm/

cdi/ , 2011.

[Denning10] Peter J. Denning, “The Great

Principles of Computing,” American

Scientist, pp. 369-372, 2010.

http://ctegypt.blogspot.com/
http://ctegypt.blogspot.com/
http://csunplugged.org/
http://www.nsf.gov/crssprgm/cdi/
http://www.nsf.gov/crssprgm/cdi/

[GrimsonGuttag08] Eric Grimson and John

Guttag, 6.00 Introduction to Computer

Science and Programming, Fall 2008.

(Massachusetts Institute of Technology:

MIT

OpenCourseWare). http://ocw.mit.edu (ac

cessed January 3, 2014). License:

Creative Commons Attribution-

Noncommercial-Share Alike.

[Guttag13] John V. Guttag, Introduction to

Computation and Programming Using

Python, MIT Press, 2013.

[HeyPapay14] Tony Hey and Gyuri

Papay, The Computing Universe,

Cambridge University Press, scheduled for

June 2014.

[Klawe13] Maria Klawe, “Increasing the

Participation of Women in Computing

Careers,” Social Issues in

Computing,http://socialissues.cs.toronto.e

du/2013/12/women/, 2013.

[Farrell13] Michael B. Farrell, “Computer

science fills seats, needs at Harvard,”

Boston

Globe,http://www.bostonglobe.com/busine

ss/2013/11/26/computer-science-course-

breaks-stereotypes-and-fills-halls-

harvard/7XAXko7O392DiO1nAhp7dL/stor

y.html, November 26, 2013.

[Levin13] Leonid Levin, “Universal

Heuristics: How Do Humans Solve

‘Unsolvable’ Problems?,” Algorithmic

Probability and Friends. Bayesian

Prediction and Artificial Intelligence Lecture

Notes in Computer Science Volume 7070,

2013, pp 53-54.

[Miller13] Claire Cain Miller, “Geek Appeal:

New York vs. Seattle,” New York

Timeshttp://www.nytimes.com/2013/04/14/

education/edlife/new-york-and-seattle-

compete-for-data-science-

crown.html?_r=0, April 14, 2013.

[NRC05] Frontiers at the Interface of

Computing and Biology, National Research

Council, 2005.

[NRC09] “A New Biology for the

21st Century,” National Research Council,

2009.

[NRC10] “Report of a Workshop on the

Scope and Nature of Computational

Thinking,” National Research Council,

2010.

[NRC11] “The Report of a Workshop on

Pedagogical Aspects of Computational

Thinking, National Research Council,

2011.

[PITAC05] President’s Information

Technology Advisory Council,

“Computational Science: Ensuring

America’s Competitiveness,” Report to the

President, June 2005.

[UKEd13] UK Department for Education,

“Computing Programmes of study for Key

Stages 1-4,” February

2013,http://media.education.gov.uk/assets

/files/pdf/c/computing%2004-02-

13_001.pdf

[Wing06] Jeannette M. Wing,

“Computational Thinking,”

Communications of the ACM, Vol. 49, No.

3, March 2006, pp. 33–35. In

French: http://www.cs.cmu.edu/afs/cs/usr/

wing/www/ct-french.pdf and in

Chinese:http://www.cs.cmu.edu/afs/cs/usr/

wing/www/ct-chinese.pdf

[Wing08] Jeannette M. Wing, “Five Deep

Questions in Computing, Communications

of the ACM, Vol. 51, No. 1, January 2008,

pp. 58-60.

[Wing11] Jeannette M. Wing,

“Computational Thinking: What and Why,”

The Link, March 2011.

http://socialissues.cs.toronto.edu/2013/12/women/
http://socialissues.cs.toronto.edu/2013/12/women/
http://www.bostonglobe.com/business/2013/11/26/computer-science-course-breaks-stereotypes-and-fills-halls-harvard/7XAXko7O392DiO1nAhp7dL/story.html
http://www.bostonglobe.com/business/2013/11/26/computer-science-course-breaks-stereotypes-and-fills-halls-harvard/7XAXko7O392DiO1nAhp7dL/story.html
http://www.bostonglobe.com/business/2013/11/26/computer-science-course-breaks-stereotypes-and-fills-halls-harvard/7XAXko7O392DiO1nAhp7dL/story.html
http://www.bostonglobe.com/business/2013/11/26/computer-science-course-breaks-stereotypes-and-fills-halls-harvard/7XAXko7O392DiO1nAhp7dL/story.html
http://www.bostonglobe.com/business/2013/11/26/computer-science-course-breaks-stereotypes-and-fills-halls-harvard/7XAXko7O392DiO1nAhp7dL/story.html
http://link.springer.com/book/10.1007/978-3-642-44958-1
http://link.springer.com/book/10.1007/978-3-642-44958-1
http://link.springer.com/book/10.1007/978-3-642-44958-1
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://www.nytimes.com/2013/04/14/education/edlife/new-york-and-seattle-compete-for-data-science-crown.html?_r=0
http://www.nytimes.com/2013/04/14/education/edlife/new-york-and-seattle-compete-for-data-science-crown.html?_r=0
http://www.nytimes.com/2013/04/14/education/edlife/new-york-and-seattle-compete-for-data-science-crown.html?_r=0
http://www.nytimes.com/2013/04/14/education/edlife/new-york-and-seattle-compete-for-data-science-crown.html?_r=0
http://www.nap.edu/catalog.php?record_id=11480
http://www.nap.edu/catalog.php?record_id=11480
http://www.nap.edu/catalog.php?record_id=12764
http://www.nap.edu/catalog.php?record_id=12764
http://www.nap.edu/catalog.php?record_id=12840
http://www.nap.edu/catalog.php?record_id=12840
http://www.nap.edu/catalog.php?record_id=12840
http://www.nap.edu/catalog.php?record_id=12840
http://www.nap.edu/catalog.php?record_id=13170
http://www.nap.edu/catalog.php?record_id=13170
http://www.nap.edu/catalog.php?record_id=13170
http://media.education.gov.uk/assets/files/pdf/c/computing%2004-02-13_001.pdf
http://media.education.gov.uk/assets/files/pdf/c/computing%2004-02-13_001.pdf
http://media.education.gov.uk/assets/files/pdf/c/computing%2004-02-13_001.pdf
http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/Wing06.pdf
http://www.cs.cmu.edu/afs/cs/usr/wing/www/ct-french.pdf
http://www.cs.cmu.edu/afs/cs/usr/wing/www/ct-french.pdf
http://www.cs.cmu.edu/afs/cs/usr/wing/www/ct-chinese.pdf
http://www.cs.cmu.edu/afs/cs/usr/wing/www/ct-chinese.pdf
http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/Wing08.pdf
http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/Wing08.pdf
http://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why

Jeannette M. Wing is Corporate Vice President, Microsoft Research. She is on leave as

President’s Professor of Computer Science from Carnegie Mellon University where she

twice served as Head of the Computer Science Department. From 2007-2010 she was

the Assistant Director of the Computer and Information Science and Engineering

Directorate at the National Science Foundation. She received her S.B.,S.M., and Ph.D.

degrees from the Massachusetts Institute of Technology. Wing’s general research

interests are in formal methods, programming languages and systems, and trustworthy

computing. She is a Fellow of the American Academy of Arts and Sciences, American

Association for the Advancement of Science (AAAS), Association for Computing

Machinery (ACM), and Institute of Electrical and Electronics Engineers (IEEE).

http://www.cs.cmu.edu/~wing/

